
Loops
in Java

Introduction

In a loop, a part of a program is
repeated over and over until a
specific goal is reached. Loops will
continue to execute statements,
called the body of the loop, as long
as the condition holds true.
In Java, there are three types of
loops:
● while loops
● for loops
● do loops

Important Note:
When you declare a variable
inside the loop body, the variable
is created for each iteration and
removed after the end of each
iteration.

while and for Loops

Syntax for while loops:
 while (condition)
 {
 statements
)
Generally, the variable for the
condition is declared outside of the
loop and updated in the loop.

In for loops, the variable for the
condition is initialized in the for
statement.
Syntax for for loops:
 for (initialization; condition; update)
 {
 statements
 }

Example

Jack earns $12 a day babysitting
and wants to know how long it’ll
take him to earn at least $500.
while loop:
 int m = 0; //m is how much he’s earned
 int days = 0;
 while (m < 500)
 {
 m = m + 12;
 days = days + 1;
 }
 System.out.println(days);
for loop:
 int days = 0;
 for (int m=0; m<500; m=m+12)
 {
 days = days + 1;
 }
 System.out.println(days);

do Loops

In a do loop (or do-while loop), the
body of the loop is executed first,
and then the condition is tested.

Syntax:
 do
 {
 statements
 }
 while (condition);

A typical example for a do loop is
input validation. You want to ask a
user for an input before checking
whether it is acceptable, and you
keep asking for an input if it is
unacceptable.

Operators in Loops

In loops, variables are constantly
being incremented and
decremented by certain values.
There are various operators that
we can use to do this.

For a variable x and any value y...

Operator

++

--

+=

-=

Usage

x++

x--

x+=y

x-=y

Meaning

x = x+1

x = x-1

x = x+y

x = x-y

Common Errors

One common mistake in loops is
the infinite loop. This occurs when
the condition is never met, and the
loop will continue to run forever.
This can occur if you forget to
update the variable used in the
condition or if you increment
instead of decrement the variable
(or vice versa).

Another common mistake is the
off-by-one error. It is easy to be off
by one iteration of the loop. This
can be avoided by manually
tracing the variables as the loop
runs.

Practice

1. What does the following loop
print?
 int n = 1;
 while (n < 100)
 {
 n = 2*n;
 System.out.print(n + “ ”);
 }

2. What type of error do you see in
the following code?
 int n = 1;
 while (n != 50)
 {
 System.out.println(n);
 n = n+10;
 }

